Dear Client,

Thank you for purchasing our UHV-725 Automatic Capacitance Inductance Tester. Please read the manual in detail prior to first use, which will help you use the equipment skillfully.

Our aim is to improve and perfect the company's continually, may products SO there slight be differences between your purchase equipment and its instruction manual. You can find the changes in the appendix. Sorry for the inconvenience. If you have further questions,

welcome to contact with our service department.

The input/output terminals and the test column may bring voltage, when you plug/draw the test wire or power outlet, they will cause electric spark. PLEASE CAUTION

RISK OF ELECTRICAL SHOCK!

Company Address:

- ◆ T4, No. 1, High-tech 2 Road, East Lake High-tech Development Zone, Wuhan
- Sales Hotline: 86-27- 87492243
- After Service Hotline: 86-27- 87459656
- Fax: 86-27-87803129
- E-mail:qiao@hvtest.cc
- Website: www.cnuhv.com

♦ SERIOUS COMMITMENT

All products of our company carry one year limited warranty from the date of shipment. If any such product proves defective during this warranty period we will maintain it for free. Meanwhile we implement lifetime service. Except otherwise agreed by contract.

SAFETY REQUIREMENTS

Please read the following safety precautions carefully to avoid body injury and prevent the product or other relevant subassembly to damage. In order to avoid possible danger, this product can only be used within the prescribed scope.

Only qualified technician can carry out maintenance or repair work.

--To avoid fire and personal injury:

Use Proper Power Cord

Only use the power wire supplied by the product or meet the specification of this produce.

Connect and Disconnect Correctly

When the test wire is connected to the live terminal, please do not connect or disconnect the test wire.

Grounding

The product is grounded through the power wire; besides, the

ground pole of the shell must be grounded. To prevent electric shock, the grounding conductor must be connected to the ground.

Make sure the product has been grounded correctly before connecting with the input/output port.

Pay Attention to the Ratings of All Terminals

To prevent the fire hazard or electric shock, please be care of all ratings and labels/marks of this product. Before connecting, please read the instruction manual to acquire information about the ratings.

Do Not Operate without Covers

Do not operate this product when covers or panels removed.

Use Proper Fuse

Only use the fuse with type and rating specified for the product.

Avoid Touching Bare Circuit and Charged Metal.

Do not touch the bare connection points and parts of energized equipment.

Do Not Operate with Suspicious Failures

If you encounter operating failure, do not continue. Please contact with our maintenance staff.

Do Not Operate in Wet/Damp Conditions.

Do Not Operate in Explosive Atmospheres.

Ensure Product Surfaces Clean and Dry

-Security Terms

Warning: indicates that death or severe personal injury may result if proper precautions are not taken

Caution: indicates that property damage may result if proper precautions are not taken.

Contents

Safety precautions before the test6
I. Product instruction7
ll. Instrument wiring10
III. Instrument operation17
IV. Software24
V. Fault phenomenon and troubleshooting34
VI. Packing list

Safety precautions before the test

1. No live measurement.

2. Clamps supporting the use of instruments, please replace the accessory box after each use to avoid damage.

3. Instrument test leads, clips and clamp jaws should be kept clean to ensure good contact test.

4. The power cord should be matched the instrument electrical outlets.

5. Since the LCD is affected by temperature, resulting in the screen brightness changes, such as the writing is not clear in the System Settings screen to adjust backlight settings.

6. The instrument should work in the technical parameters specified environment, especially the instrument connecting test leads should be away from strong electromagnetic fields, so as not to interfere with the measurement.

7. After unpacking the instrument, check the instrument according to the packing list before the instrument operation, first read this manual, or the people familiar with the guidance of the operation, in order to avoid misuse.

6

I. Product instruction

1.1 Overview

UHV-725 adopts a new generation of high-speed mixing microprocessors, highly integrated, simultaneous collect the tested objects' voltage signals and current signals, automatically calculate the capacitance value, the inductance value and reactive power value. Field measurement capacitor without removing the connecting wire, simplifying the testing process, improve efficiency and avoid damage to electrical equipment. After finished the test, automatically calculate each phase capacitance value and other parameters, can easily distinguish the capacitor quality and connecting conductors faults among components. At the same time, the instrument with data storage and USB communication functions, can ensure the measuring data integrity.

1.2 Instrument function

The main function of the instrument is measuring compensation capacitor capacitance value of each phase and total capacitance, inductance value, the resistive component of the test sample, dielectric loss angle, loss factor, reactive power and active power.

1.3 Products features

1. No wire disconnect test: instrument equipped with high-current high-precision current clamp, field measurement capacitor without removing the cable, simplifying the testing process, improve efficiency and avoid damage to electrical equipment.

2. Highly intelligent: after the three-phase test is completed , automatically calculate the capacitance value of each phase and the total capacitance value , reactive power and other parameters, simple and intuitive , reducing the burden on the tester.

3. Four-terminal measurement: The four-terminal measurement techniques, measurement accuracy, repeatability good

7

4. Automatic Compensation: current automatic segmentation compensation, current full scale linearly, improve measurement precision

5. Storage features: Max Storage 400 instrument data, historical data query capabilities.

6. USB communication: USB communication functions with the PC.

7. Large Touch Screen: 7-inch color touch -screen LCD display, intuitive interface, easy to operate.

8. Temperature monitoring: monitor ambient temperature, easy to record values of capacitors at different temperatures.

1.4 Technique parameters

- Capacitance measurement range and accuracy Capacitance measurement range: 0.1uF~3300uF Accuracy: ± (reading ×1%+0.005uF) Resolution: 0.001uF
- 2) Inductance measurement range and accuracy
 Inductance measurement range: 100µH~50H
 Accuracy: ±reading×2%
- 3) Power supply and Test Power

Power supply: AC 220V±10%, 50Hz

Output voltage (open circuit): AC 23V±10%, 50Hz (capacitance);

AC 3V±20%, 50Hz (inductance)

Maximum output current: 20A

Output short circuit protection: Automatic

4) Working conditions, dimension and weight

Temperature: -10 $^{\circ}C$ -+40 $^{\circ}C$; relative humidity: ≤90%;

Dimension (host): 400×290×175mm; weight: 9.5kg;

Out case dimension: 340×260×135mm weight: 3.6kg;

1.5 Instrument panel

Picture 1.1 panel layout

6.USB interface

1.touch screen	2.ground terminal	3.2A fuse	
----------------	-------------------	-----------	--

4.power outlet 5.power switch

7.capacitance measurement output port connection

8.inductance measurement output port connection

9.public output interface

10. clamp current sensor

Note: electrical outlet containing a fuse holder, containing 5A fuse 2 pcs. 1.6 Work principle

The instrument uses a new generation of high-speed mixing microprocessors, highly integrated, dual-chip high-speed 16-bit AD converter, synchronous acquisition the test voltage and current signals, automatic identify range, programmable gain amplifier, amplification capability 1000 times, use precision resistors, temperature coefficient is small, the data will be converted after the microprocessor operation to obtain test results, LCD display all measurement parameters, the entire measurement automatically. RC inner serial, parallel equivalent circuit diagram shown in Figure 1.2, Cx is actual

capacity, Rs is lead resistance, Lo is the lead inductance, Rp is the insulation resistance between poles, Co is distributed capacitance between electrodes. Actual inductance, capacitance, resistance or reactance are not an ideal resistive element, but in series or parallel impedance presented in the form of a complex element, the instrument according to parallel and series equivalent circuit to calculate the desired values, the equivalent circuit will be different the result, which depends on various different elements. Generally for low impedance component (essentially high capacitance and low inductance) in series equivalent circuit. Conversely, the high value impedance element (basically low capacitance and high inductance) using the parallel equivalent circuit.

Picture 1.2 RC inner serial, parallel equivalent circuit diagram

II. Instrument wiring

Power capacitors inte connection generally use star connection (Y) or delta-connected (\triangle). Actual operating experience has shown that the delta connection capacitor bank failure rate is much higher than star connected, currently the majority of high-voltage parallel capacitor banks use star connection. The instrument with connection methods: three-phase Y-shaped, three-phase \triangle shape, three-phase Yn-shape, three-phase III shape.

Before power capacitor or reactor test, first the red cable clamp connect

with red wire, black clamp with black wire, the subsequent connection of two parts: the instrument panel wiring and measurements wiring, instrument panel wiring means connecting the test leads to the instrument panel, the measurement wiring means connection between test line and test article.

2.1 Three-phase Y-connected capacitor measurement

Three phase Y- connected, instrument panel A, B, C three-phase wiring the same, as described below:

- 1. Black wire connect "output (black)"
- 2. Red wire connect "capacitor (red)"
- 3. Clamp current sensor connect "current input"

Y-connected tested capacitor A phase measuring wiring is shown in Figure 2.1, the following specific wiring:

- 1. Red clip: phase A busbar
- 2. Black clip: phase B busbar
- 3. Clamp Current Sensor set in the high-voltage capacitor bank A phase

lead.

Picture 2.1 Y-connected tested capacitor A phase measuring wiring

Y-connected tested capacitor B phase measuring wiring is shown in Figure 2.2, the following specific wiring:

- 1. Red clip: phase B busbar
- 2. Black clip: phase C busbar

3. Clamp Current Sensor set in the high-voltage capacitor bank B phase lead.

Picture 2.2 Y-connected tested capacitor C phase measuring wiring

Y-connected tested capacitor C phase measuring wiring is shown in Figure 2.3, the following specific wiring:

- 1. Red clip: phase C busbar
- 2. Black clip: phase A busbar

3. Clamp Current Sensor set in the high-voltage capacitor bank C phase

lead.

Picture 2.3 Y-connected tested capacitor C phase measuring wiring

2.2 Three phase \triangle -connected capacitor measurement

Three phase \triangle - connected, instrument panel A, B, C three-phase wiring the same, as described below:

- 1. Black wire connect "output (black)"
- 2. Red wire connect "capacitor (red)"
- 3. Clamp current sensor connect "current input"

\triangle -connected tested capacitor A phase measuring wiring is shown in

Figure 2.4, the following specific wiring:

- 1. Red clip: phase A busbar
- 2. Black clip: phase B busbar

3. Short circuit phase B and C

4. Clamp Current Sensor set in the high-voltage capacitor bank A phase lead.

Picture 2.4 \triangle -connected tested capacitor A phase measuring wiring

 \triangle -connected tested capacitor B phase measuring wiring is shown in

Figure 2.5, the following specific wiring:

- 1. Red clip: phase B busbar
- 2. Black clip: phase C busbar
- 3. Short circuit phase A and C
- 4. Clamp Current Sensor set in the high-voltage capacitor bank B phase

lead.

Picture 2.5 \triangle -connected tested capacitor B phase measuring wiring

 $\bigtriangleup\mbox{-connected tested capacitor C phase}$ measuring wiring is shown in

Figure 2.6, the following specific wiring:

- 1. Red clip: phase C busbar
- 2. Black clip: phase A busbar
- 3. Short circuit phase A and B
- 4. Clamp Current Sensor set in the high-voltage capacitor bank C phase

lead.

Picture 2.6 \triangle -connected tested capacitor C phase measuring wiring

2.3 Three-phase Yn-connected capacitor measurement

Three phase Yn- connected, instrument panel A, B, C three-phase wiring the same, as described below:

- 1. Black wire connect "output (black)"
- 2. Red wire connect "capacitor (red)"
- 3. Clamp current sensor connect "current input"

Yn-connected tested capacitor A phase measuring wiring is shown in

Figure 2.7, the following specific wiring:

- 1. Red clip: phase A busbar
- 2. Black clip: phase N

3. Clamp Current Sensor set in the high-voltage capacitor bank A phase

lead.

Picture 2.7 Yn-connected tested capacitor A phase measuring wiring

Yn-connected tested capacitor B phase measuring wiring is shown in

Figure 2.8, the following specific wiring:

- 1. Red clip: phase B busbar
- 2. Black clip: phase N

3. Clamp Current Sensor set in the high-voltage capacitor bank B phase lead.

Picture 2.8 Yn-connected tested capacitor B phase measuring wiring

Yn-connected tested capacitor C phase measuring wiring is shown in

Figure 2.9, the following specific wiring:

- 1. Red clip: phase C busbar
- 2. Black clip: phase N

3. Clamp Current Sensor set in the high-voltage capacitor bank C phase lead.

Picture 2.9 Yn-connected tested capacitor C phase measuring wiring

2.4 Three-phase III-connected capacitor measurement

Three phase III- connected, instrument panel A, B, C three-phase wiring the same, as described below:

1. Black wire connect "output (black)"

- 2. Red wire connect "capacitor (red)"
- 3. Clamp current sensor connect "current input"

III-connected tested capacitor R phase measuring wiring is shown in Figure 2.10, the following specific wiring:

1. Red clip: phase A busbar

2. Black clip: phase A'

3. Clamp Current Sensor set in the high-voltage capacitor bank A phase

lead.

Picture 2.10 III-connected tested capacitor A phase measuring wiring

After A phase measurement completion transfer to the next phase wire,

the same as B, C phase sequentially move wiring.

2.5 Inductance measurement

Inductance measurement instrument panel wiring as follows:

- 1. Black wire connect "output (black)"
- 2. Red wire connect "inductance (red)"
- 3. Clamp current sensor connect "current input"

Wiring as shown in picture 2.11, the following specific wiring:

- 1. Red clip: one end of busbar
- 2. Black clip: another end of busbar
- 3. Clamp Current Sensor set in the inductor lead.

Picture 2.11 Inductance measurement wiring

III. Instrument operation

3.1. Interface introduction

First connect AC230V power cable to the power outlet, turn on the power switch on the front panel, the instrument into the welcome interface, after system initialization is completed, the instrument into the main interface, as shown in Figure 3.1. The interface has six options, click on the icon to enter the corresponding sub-interface.

3.2. System setting

Click on "System Setting" icon on the screen to enter the system setting interface (Figure 3.2). In this interface, set the time and backlight settings.

Time setting: first click on "time setting", then click on "+" or "-" on the right, after the time modification is completed, click "Setting" icon, the time setting is completed.

Backlight setting: Click on "+" or "-" on the right, to complete the backlight setting, the screen synchronously displays modified backlight brightness.

Click "back" button to return to the main interface.

Figure 3.1 main interface

Figure 3.2 system setting interface

3.3. Measurement setting

Before doing capacitance or inductance test, need to set the corresponding measuring parameters according to tested product parameters, click on "Measurement Setting" icon in the main interface to enter measurement setting interface (Figure 3.3). In this interface, there is "Set voltage level," "Add voltage level", "Set equivalent mode" and "System Information" four settings.

Set voltage level: Click on " 《 "or " 》 " button to select the required voltage level, while the "System Information" column will be prompted

"switching voltage level is completed". Click on "Setting" button to complete the setting, while the "System Information" column will be prompted "setting the voltage level is successful". "Current / Total" displays the currently selected voltage level sequence number in the total voltage level numbers. Click on "Delete" that deletes the currently selected voltage level, while the "System Information" column will be prompted "delete is successful". If there is no required voltage level value, the user can add the required voltage level value in the "add voltage level" bar, in the "please enter" option box to enter the required voltage level value, click "Add" button to complete, at the same time. "System information "column will be prompted "Adding user-defined voltage level is successful"

Set equivalent mode: the default equivalent mode is "series mode." If the currently displayed equivalent mode is "series mode", click on the system automatically switches to "Parallel mode"; if the currently displayed equivalent mode is" parallel mode", click on the system automatically switches to "series mode", while "System information" column displays the currently selected equivalent mode. Click "setting "button to complete the setting, while the "system information "column will be prompted "setting equivalent mode is successful".

Set voltage class <	$<$ 10/ $\sqrt{3kV}$	>>	Set
Present/T	otal:		Del
Add voltage class In	nput:	V	Add
Set equivalent type	Series		Set
Sys info: Please select volta	age class or add custom vo	oltage class !	Back

Click "back" button to return to the main interface.

Figure 3.3 measurement setting interface

3.4. Capacitance test

In the main interface, click on "capacitance test" icon to enter the capacitance test interface, can select Y type, Yn type, \triangle type, and III type, the following take Yn type capacitor as example.

First click on "Yn type" option, the interface will automatically switch to Yn type capacitance test interface, as shown in Figure 3.4.

Туре Ү	Type Yn	Туре 🛆	Type III
Phase	Loss	angle	
U	Loss ta	angent	Test
Ι	Reactive	power	
f		Ca	
С		Cb	
Xc		Cc	Back
R		Ct	
Sys info:			
Equivalent type Vo	oltage class	Tm: C	11:15:44

Figure 3.4 capacitance test interface

After checking the wiring is correct, click on "Measure" button, the instrument will automatically complete R-phase measurement (Figure 3.5).

be r	Type Yn	Туре 🛆	Type III
A n	Los	s angle 89.23°	
24.77V	Loss t	angent 1.332%	Test
798.2mA	Reactive	power 1.718KVa	r
50Hz		Ca	
102.5uF		Cb 🗌	
31.03Ω		Ce	Back
0.413Ω		Ct	
Test 1 cor	nplete,please re	place other phas	se!
	A n 24.77V 798.2mA 50Hz 102.5uF 31.03Ω 0.413Ω Test 1 core	A n Los 24.77V Loss t 798.2mA Reactive 50Hz 102.5uF 31.03Ω 0.413Ω Test 1 complete,please re	AnLoss angle 89.23° 24.77VLoss tangent 1.332% 798.2mAReactive power 1.718 KVa50HzCa102.5uFCb31.03 Ω Cc0.413 Ω CtTest 1 complete, please replace other phase

Figure 3.5 A-phase measured data

After manually replace B-phase, click on "measure" button, the instrument

automatically complete B-phase measurement (Figure 3.6), and then manually replace C-phase, click on "measure" button, the instrument automatically complete C-phase measurement, as shown in Figure 3.7, the "system information" column will prompt "three kinds of phases capacitance test is completed, continues to test or replaces the network to test", then the interface appears "save" button, Yn type capacitor test is completed, click " save "button to save the measured data for later queries. After the test is completed, click on "measure" will begin next group of tests, click on "back" button to return to the main interface.

Ty	pe Y	Type Yn	Туре 🛆	Type III
Phase	Bn	Loss	angle 89.15°	
U	24.76V	Loss ta	angent 1.471%	Test
Ι	799.5mA	Reactive	power 1.722KVa	ır
f	49.99Hz		Ca	
C	102.7uF		Cb	
Xc	30.97Ω		Ce	Back
R	0.455Ω		Ct	
ys info:	Test 2 co	mplete,please re	place other pha	se!
uivalent typ	Series Volt	age class 400V	Tm: 16.8 °C 201	5-05-20 11:15:44

Figure 3.6 B-phase measured data

Ty	pe Y	Type Yn	Type △	Туре Ш
Phase	C n	Loss an	gle 89.15°	_
U	24.79V	Loss tange	ent 1.47%	Test
Ι	803.9mA	Reactive pov	ver 5.169KVar	
f	49.99Hz		^{Ca} 102.5uF	
С	103.2uF		Cb 102.7uF	_
Xc	30.84Ω		Ce 103.2uF	Back
R	0.453Ω		Ct 308.5uF	
ys info:	Test 3 cor	nplete,please repla	ace other phase	1

Figure 3.7 C-phase measured data

Note: 1. after completed each phase measurement, need to manually replace the wiring.

2. During each measurement, forbid to returning to "Measurement Setting" interface, change the measuring setting parameters, otherwise it will not save this set of measured data

3.5. Inductance test

In the main interface, click on "inductance test" icon to enter inductance test interface (Figure 3.8), confirm the wiring is correct, click on "Measure" button to start the test, after the test is completed, click "Save" to save measured data (Figure 3.9).

	Inductance Test
Phase	Loss angle
U	Loss tangent Test
Ι	Reactive power
f	
L	
Xl	
R	
Sys info:	Inductance testing
Equivalent typ	Series Voltage class 400V Tm: 16.8 C 2015-05-20 11:13:58

Figure 3.8 inductance test interface

Inductance Test						
Phase		Loss angle 3.624°	1			
U	3.402V	Loss tangent 99.79%	Test			
Ι	19.04mA	Reactive power 14.16KVar				
f	50.01Hz					
L	35.94mH					
Xl	11.29Ω					
R	178.3Ω					
Sys info:	Test complete,	continue or replace other phase)			
Equivalent typ	Series Voltage class 4	00V Tm: 16.8 °C 2015-05-20	11:13:58			

Figure 3.9 inductance measured data

3.6 Data query

Instrument maximum save 200 groups of test data, in the main interface, click on "Data Query" to enter data query interface to view saved history data (Figure 3.10).

Figure 3.10 data query

Click date data on the screen to select the data you want to view, prior to the date " \checkmark " indicates which data is selected, click on "Query Data" to query the selected historical data, query data interface is the same with capacitance and inductance measurement data interface.

Click the Back button to return to the main interface.

Explain the right of information bar of Figure 3.10

1. Data query interface capacitance and inductance data together, saved according time.

2. "Current page / Total page": "current page" refers to the number of information page for data query on the left shows in the total pages; "total page" refers to the total number of pages.

"Current Number / Total": "Current number" means the currently selected capacitive or inductive data in the total number of data sorting number;
 "Total" refers to the total capacitive or inductive data.

4. "Capacitance / inductance": "capacitance" refers to the total number of

capacitive data; "inductance" refers to the total number of data inductance.

5. "Delete All": click "Delete All" will delete all the saved data.

3.7 Data communication

After the communication cable connected, power on the instrument, until the instrument into the main interface shown in Figure 3.1, click the "data communication" entering the communication interface (Figure 3.11). Through the PC queries saved history data or the data for further analysis, the specific operation see "IV software."

Figure 3.11 data communication interface

IV. Software

4.1. Software brief introduction

This matching software is used to upload data from the instrument to the

PC, for test personnel to do further analysis and data processing.

4.2. Software Features

The software is green software, no installation can be used

Supports Windows series of operating systems, running speed, easy to

use

4.3. Operating environment

Hardware requirements: recommended Celeron 533 or above CPU, 512 MB or more memory, 1 GB or more available hard-disk space.

Support software: Windows98, Windows2000, Windows XP, Windows2003, Vista, Windows7 and Windows series of operating systems; Microsoft Office 2000 and above version (must include Excel).

4.4. U-disk File

Open configuration U-disk, copy the file to the local computer folder, and open the file directory as shown in Figure 4.1.

0	*					1
1	USB DRIVER					-
2	CONFIG. INI	1	KB			
3	Automatic Capacitance Inductance Tester .exe	1,011	KB			
4	Instruction manual	484	KB	Microsoft	Office	Word.

Figure 4.1 U-disk directory

Icon (1): USB Driver

Icon 2: CONFIG.INI configuration file

Icon $\ensuremath{\textcircled{3}}$: "Automatic Capacitance Inductance Tester .exe", double-click the file

to run the program

Icon ④: Instruction manual

4.5. PC Communication cable usage

First connect to the PC need to install USB driver, after connecting the USB cable, turn on the instrument, the computer will be prompted to find new hardware, at the same time pop-up prompts to install the driver software, choose " from list or specific location to install", as shown in Figure 4.2.

If your hardware came with an installation CD or floppy disk, insert it now.

What do you want the wizard to do?

- Install the software automatically (Recommended)
- C Install from a list or specific location (Advanced)

Click Next to continue.

Figure 4.2 USB driver installation (advanced)

Click "Next" in the dialog box, tick "Include this location in the search", click "Browse" and select the drive letter of the U-disk, click on "Next" to automatically install the USB driver, as shown in Figure 4.3.

nstall Fr	om Disk	×
H	Inset the manufacturer's installation disk, and then make sure that the correct drive is selected below.	ОК
		Cancel
	Copy manufacturer's files from:	
	A:\	Browse

Figure 4.3 USB driver installations (Browse)

4.6. Software operating instructions

After connecting the communication cable, turn on the instrument, until the instrument into the main interface, click on "data communication", and then run "Automatic Capacitance Inductance Tester .exe", as shown in Figure 4.4.

👩 Automatic Ca	pacitance Inductance	Tester			_ □ ×
File(F) Tool(T)	Help(H)				
Open Device	Download Data	Open Data	Export Report		
Capacitance Da	ata Inductance Dat	ta			
No.	Test Time	Voltage class	1st measurement		
			Serial No.	Туре	Phase
			Voltage	Current	Frequency
			Capacitance	Resistance	Dielectric loss angle
			2nd measurement		
			Serial No.	Туре	Phase
			Voltage	Current	Frequency
			Capacitance	Resistance	Dielectric loss angle
			3rd measurement		
			Serial No.	Туре	Phase
			Voltage	Current	Frequency
			Capacitance	Resistance	Dielectric loss angle
< <u> </u>	1		3		
•					

Figure 4.4 software interface

Click on "Open Device", automatic on-line, bottom left screen display "Connected", as shown in Figure 4.5.

📮 Automatic Ca	pacitance Inductance	Tester			_ _ ×
File(E) Tool(T)	Help(<u>H</u>)				
Ziose Device	Download Data	Open Data E	Export Report		
Capacitance D	ata Inductance Da	ta			
No.	Test Time	Voltage class	1st measurement		
			Serial No.	Туре	Phase
			Voltage	Current	Frequency
			Capacitance	Resistance	Dielectric loss angle
			-2nd measurement		
			Serial No.	Туре	Phase
			Voltage	Current	Frequency
			Capacitance	Resistance	Dielectric loss angle
			3rd measurement		
			Serial No.	Туре	Phase
			Voltage	Current	Frequency
			Capacitance	Resistance	Dielectric loss angle
	10.0101E				

Figure 4.5 the device is connected

Click on "Download Data" pop-up dialog box to save the file, as shown in Figure 4.6.

Save As		<u>? ×</u>
Save in:	Desktop 💌 🗢 🛍 📸	r
My Recent Documents Desktop My Documents My Computer	My Documents My Computer My Network Places DRDG_V1.3	
My Network	File name: 20160726142222	Save
Places	Save as type: Data File (*.dat)	Cancel

Figure 4.6 data save dialog box

After set the save path, click on "Save" button, the data is automatically uploaded from the instrument to the PC, the download is finished, prompts "download success", as shown in Figure 4.7.

Automat	tic Capacitance II (T) Help(H)	nductance T	ester				- 181
Z. Close Dev	rice Download I	Data Oper	Data Export Report				
Capacitar	ice Data Indu	ctance Data	1st measurement				
0.	IEST IIME	VOITAEE	Serial Do.	Type	_	Phase	-
			Voltage	Current	_	Frequency	
			Capacitance	Resistance	lects	ric loss angle	
			2nd measurement	-	_	Fhase	
					_	Frequency	_
					lects	ric loss angle	
			3x d. mez	к		Phase	
			Voltage	Current	_	Frequency	
			Capacitance	Resistance	:lects	ric loss angle	
Connects	ed! Device ID:21815					Download success!	
Start	🍊 🔞 🛅 DRDG	V1.3	Automatic Canacit	an	2 -	8 1 1 0 1 1 1 2	2:50 P

Figure 4.7 download success

Click on "Confirm" button, the list displays the downloaded capacitance

	Fool(<u>T</u>) ⊢	elp(<u>H</u>)					
Slose I	- Sevice	Download Data	Open Data	Export Report			
acit	ance Data	Inductance Dat	a				
	T	est Time	Voltage class	1st mea	surement		
	2016-0	7-18 16:59:16	10KV		Serial No.	Туре	Phase
					Voltage	Current	Frequency
				_	Capacitance	Resistance	Dielectric loss angle
				2nd mea	isurement		
					Serial No.	Туре	Phase
					Voltage	Current	Frequency
					Capacitance	Resistance	Dielectric loss angle
				-3rd mea	surement		
					Serial No.	Туре	Phase
					Voltage	Current	Frequency
					Capacitance	Resistance	Dielectric loss angle

and inductance data, as shown in Figure 4.8.

Capacitance data: click capacitance data list to view the detailed results, as shown in Figure 4.9.

🕽 Automatic Ca	pacitance Inductance	Tester					>
File(<u>F)</u> Tool(<u>T</u>)	Help(<u>H</u>)						
2. Close Device	Download Data	Open Data Ex	port Report				
Capac <mark>itance</mark> D	ata Inductance Dat	ta					
No.	Test Time	Voltage class	1st measurement				
1 201	6-07-18 16:59:16	10KV	Serial No.	1_1 Type	e Series_∆	Phase R	YB
			Voltage	24.17V Curren	t 499.2mA	Frequency 50	03Hz
			Capacitance	32.82uF Resistance	ο 0.829Ω	Dielectric loss angle 89	51°
			2nd measurement				
			Serial No.	1_2 Type	e Series_∆	Phase Y I	RB
			Voltage	24.17V Curren	t 498.9mA	Frequency 50	00Hz
			Capacitance	32.87uF Resistance	ο 0.801Ω	Dielectric loss angle 89	52°
			3rd measurement				
			Serial No.	1_3 Type	e Series_∆	Phase B	RY
			Voltage	24.16V Curren	t 498.5mA	Frequency 50	00Hz
			Capacitance	32.80uF Resistance	ο 0.804Ω	Dielectric loss angle 89	51°
د ا	U	2					
Connected! D	evice ID:21815					Download	success!

Figure 4.9 capacitance measured data

Inductance data as shown in Figure 4.10

File(E) Tool(I) Help(H) Close Device Download Data Open Data Export Report Capacitance Data Inductance Data Inductance Data Export Report No. Test Time Type Phase Voltage Current Frequency Inductance Resistance Dielect 1 2016-07-18 17:00:24 Inductance Series 3:322V 88 53mA 49:97Hz 101 6mH 19:72Ω 58
Image: Close Device Image: Close Device
Capacitance Data Inductance Data No. Test Time Type Phase Voltage Current Frequency Inductance Resistance Dielect 1 2016-07-18 17:00:24 Inductance Series 3:322V 88:53mA 49:97Hz 101.6mH 19:720 58
No. Test Time Type Phase Voltage Current Frequency Inductance Resistance Dielect 1 2016-07-18 17:00:24 Inductance Series 3.322V 88.53mA 49.97Hz 101.6mH 19.72Ω 58
1 2016-07-18 17:00:24 Inductance series 3:3221 88:3304 49:9742 101:00HH 19:721 39
Connected Device ID-21915

Figure 4.10 inductance measured data

Open the data: in Figure 4.4, can also click on "Open Data" button to view history data saved in the PC, as shown in Figure 4.11.

29 ,		1500 I	X		_	21 VI	1
se Device Do	- period		21	100	1 0 m	10	
Scitance Data	Look in:	Local Disk			* 🖬 🗗 🖽	·	
		Documents a	nd Settings				4.54
	My Recent	EWF					
	Documents	Intel					
	3	Program Files					111
	Desktop	2016072614	4935				
		2016072615	2744				ac#
		and the state					3.7
	My Uccuments						agi e
	My Computer						ase
	-						207
_		1				-	
	My Network Places	File name:	20160726144935		-	Open	
	1 toxat	Files of type:	Data File (".dat)		*	Cancel	
							1

Figure 4.11 open data

Export Report: In Figure 4.8, select capacitance data or inductance data, click on "Export Report" to generate test report document. Capacitance data

	<u>থা ×</u>				Save As	pen Device Do
		- 000	2	DRDG_V1.3	Save in	spacitance Data
ane A BC mry 50.022e arts 50.031a ane A AC mry 50.002e sple 70.521a Acc O AB mry 50.002e				USB-Driver	My Racent Documents Disktop My Documents My Computer	7010-07-18 1
-ele 09. 011a	Save Cancel	2	na facoi Bon I Sti Rest Booti cel File (* sla)	File name: Save as type:	He finteers Pieces	

file names begin with CDATA, as shown in Figure 4.12.

Figure 4.12 capacitance export report

Inductance data file names begin with IDATA, as shown in Figure 4.13.

pan Davica Do S	we As			<u> 1 × </u>
pacitance Data	Save In	ORDG_V13		
2016-07-18 5	My Preserved Documental Documental Documental My Documental	US8-Griver		nev 11 10 ner 50.0284 ate 94.5124 nev 9 ne ney 90.0026 ate 96.327.4
	My Energy and My Firstmark Places	File name. Save at type:	Excel File (*.xis)	484 E 24 Ary 50 0020 We be 59. 11:0

Figure 4.13 inductance export report

The filename format is CDATA / XDATA and XXXX (year) XX (month) XX (day) XX (hour) XX (minute) XX (second) XXX (group number) EXCEL files.

Export report is finished, open the exported report, view and edit complete test reports, capacitance test report as shown in Figure 4.14, inductance test report as shown in Figure 4.15

	Capacitance 1	Fest Report	
		Test time	:2016-07-18 16:59:10
	1st measurement	2nd measurement	3rd measurement
Serial No.	1_1	1_2	1_3
Туре	Series_ Δ	Series_A	Series_ Δ
Phase	A BC	B AC	C AB
Voltage	24.17♥	24.171	24.16V
Current	499. 2mA	498. 9mA	498. 5nA
Frequency	50.03Hz	50.00Hz	50.00Hz
Capacitance	32.82uF	32.87uF	32.80uF
Resistance	0 . 829Ω	0.801Ω	0.804Ω
Dielectric loss angle	89.51°	89.52°	89. 51 °
Reactive power		3.095MVar	
Total capacitance		98.51uF	
Temperature		25.81°C	
Voltage class		10KV	
Remark			
		Testers:	
		Print personnel:	
		Print time:	2016-07-26 15:21

Figure 4.14 capacitance test report

Inductance	e Test Report		
	Test time:2016-07-18 17:00:24		
Serial No.	1		
Туре	Inductance Series		
Phase			
Voltage	3. 322♥		
Current	88. 53mA		
Frequency	49.97Hz		
Inductance	101.6mH		
Resistance	19.72Ω		
Dielectric loss angle	58. 29°		
Reactive power	OVar		
Temperature	26.06°C		
Voltage class	1 OKV		
Remark			
	Testers:		
	Print personnel:		
	Print time: 2016-07-26 15:21		

Figure	4 15	inductance	test i	enort
Iguie	4.15	inductance	ICSI I	eport

V. Fault phenomenon and troubleshooting

Fault phenomenon	Troubleshooting	
	Check whether there is AC power supply or not	
No response after	Check the power cord	
boot, no LCD display	Check whether 5A fuse in the power socket is burn	
	out or not	
USB communication error	Check whether the device enters the computer	
	communication interface or not after turned on	
	Check the USB cable connection is stable or not	
	Check whether the USB driver is installed or	
	reinstalled or not	
	Check whether re-plug the USB cable or not after	
	installed the USB driver	
Boot normally, the		
touch screen no	Turn off the power supply, reboot	
response		
Boot normally, the	Check 5A fuse on the panel is burn out or not	
measured value	Check the wiring is correct or not	
without reading	ing Check each test line interior is disconnected or not	

VI. Packing list

No.	Name	QTY
1	Host	1
2	Test leads(red/black with clip, 5M)	1
3	220V AC power cord	1
4	Clamp Current Sensor	1
5	USB communication wire	1
6	Short circuit wire (with clip, 2m)	1
7	Ground wire	1
8	5A fuse	6
9	U-disk	1
10	Instruction manual	1
11	Test report	1
12	Certificate	1